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OVERVIEW

 Start: October 1, 2017
 End: September 30, 2021
 Percent Complete: 75%

Timeline

Budget
 Funding for FY20 – $5.6M

Barriers
 Cell degradation during fast charge
 Low energy density and high cost of fast charge 

cells
 Low energy efficiency associated with high specific 

energy density cells – advanced chemistries

 Argonne National Laboratory (ANL)
 Idaho National Laboratory (INL)
 Lawrence Berkeley National Lab (LBNL) 
 National Renewable Energy Laboratory (NREL)
 SLAC National Accelerator Lab
 Oak Ridge National Lab (ORNL)

Partners



RELEVANCE – BATTERY THERMAL IMPLICATIONS
Life, cost, performance, and safety of energy storage systems are strongly 
impacted by temperature.

Objectives of Heat Generation Thrust:
• Provide feedback to DOE on the battery thermal challenges associated with XFC

• Understand temperature nonuniformity within cell during XFC

• Develop techniques for operando interior temperature measurements

• Identify limitations of using high specific energy density cells

• Identify thermal areas of concern with existing battery systems

• Identify how changes to the battery chemistry and cell design affect the cells’ efficiency and 
performance

• Identify state-of-the-art thermal management strategies and how these can be applied to 
future battery electric vehicles



FY 2020 MILESTONES

Milestone Due Date Status
Define the critical parameters that affect heat generation within a cell. 12/31/19 Completed

Quantify heat generation of graphite/Nickel-Manganese-Cobalt 
(NMC) 532 through calorimeter experiments.  

3/31/20 Completed

Develop and evaluate techniques capable of measuring the localized 
heat generation. 

9/30/20 On-track

Develop 3D model capable of assessing heterogeneities, heat 
transport, and strategies to mitigate temperature rise under XFC 
conditions.  

9/30/20 On-track



APPROACH – MEASURING HEAT GENERATION AND THERMAL 
TRANSPORT PROPERTIES FOR MODEL DEVELOPMENT
Identify Critical Parameters that affect heat generation in an electric vehicle (EV) cell.
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Microcalorimeter: Heat Generation Heat Efficiency under High Rate Charge
for Different Porosity Cells
Anode:  3 mAh/cm2

C-Rate limited
by cell design

HEV: hybrid electric vehicle

Discharge Efficiency Comparison:
Energy vs. Power Cells

Sensor for spatially resolved 
heat transport properties.

100 kWh Pack Under 6C Constant 
Current Constant Voltage (CCCV) Charge

Anode: 4mAh/cm2

1D/3D Model Development



APPROACH: MEASURE AND UNDERSTAND TEMPERATURE VARIATION WITHIN EV CELL
Benefit: Temperature inhomogeneity is often hypothesized to be a culprit in observed inhomogeneous degradation 
(such as local Li plating, local SOC variation, local solid electrolyte interphase (SEI) thickness variation). Measuring 
internal temperature will allow for correlation between hot spots to evidence of degradation.

Jelly Roll

NMC532/Gr
200 mAh

RTD Outer
Surface

RTD
inside

2C Charge

Resistance temperature detector (RTD) 
stable in electrolyte and under cycling

2°C Δ

Sweep heating frequency to measure thermal 
transport properties at different distances from 
sensor.  Used to assess internal temperatures.

Prototype of exterior 3ω sensor. 

Above: Battery assembly with plastic block holder
compressing clear pouch cell and AZ31 Mg
alloy sheet, whose shift in d-spacing was used
for pouch surface temperature measurement

Use X-ray diffraction (XRD)/synchrotron to measure 
operando temperature gradients via the change in d-
spacing of materials in the battery while it is cycling.



OUTLINE
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 Understanding heat generation and identifying key parameters that affect heat 
generation with high energy density cells.

 Operando temperature measurements using an internal RTD.

 Understanding temperature uniformity/nonuniformity through XRD/synchrotron 
experiments.

 Developing internal/external 3ω sensor to measure thermal transport 
properties within cell during cycling.

Technical Accomplishments and Progress



MEASURE HEAT GENERATION WITH A HIGH LOADING EV CELL
Measure graphite/NMC532 efficiency (Heat Generation) for medium porosity (36.4%) cell at three 
temperatures.  Data used in 1-D model to identify critical heat generation parameters.
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Results at 0°C only valid at low charge rates - 4C and below.

CC until 4.1 Volts

Technical Accomplishments and Progress

Anode: LN3107 -190-4A
91.83 wt% Superior Graphite SLC1506T
2 wt% Timcal C45 carbon 
6 wt%  Kureha 9300 PVDF Binder
0.17 wt% Oxalic Acid
Lot#: 573-824, received 03 /11/2016
Single-sided coating, CFF -B36 anode

Cu Foil Thickness: 10 µm
Total Electrode Thickness: 80 µm
Total Coating Thickness: 70 µm
Porosity: 34.5 %
Total SS Coating Loading: 9.94 mg/cm2

Total SS Coating Density: 1.42 g/cm3

Made by CAMP Facility

Cathode: LN3107 -189-3
90 wt% Toda NMC532
5 wt% Timcal C45
5 wt% Solvay 5130 PVDF
Matched for 4. 1V full cell cycling
Prod:NCM -04ST, Lot#:7720301
Single-sided coating, CFF-B36 cathode
Al FoilThickness: 20 µm
Al Foil Loading: 5.39 mg/cm2

Total Electrode Thickness:91 µm
Coating Thickness: 71µm
Porosity: 35.4%
Total Coating Loading: 18.63mg/cm2

Total Coating Density: 2.62g/cm3

Made by CAMP Facility



EFFICIENCY FOR HIGH SINGLE SIDED EV CELLS WITH LOADING OF 4 mAh/cm2

1-D model results to identify critical parameters associated with heat generation.

• Minimal gains in efficiency with elevated temperature 
because effective C-rate increases

• NG1: 1.8X, 3X and increase of 0.05 to ionic 
conductivity, diffusivity, and transference number

• NG2: 2.3X, 4X, and an increase of 0.15 to ionic 
conductivity, diffusivity, and transference number

• Efficiency during 10-minute charge of 6 
CCCV up to 4.2 V

• Efficiency calculated = Average 
Heat/Average Power

• Initial temperatures given and cell has <= 
8°C rise

• Lower cell overpotential results in 
significant gains in capacity/effective 
charge rate

Effective C-rate

Case
Study

State-of- Charge
(SOC) Returned

30°C 57.1 %

45°C 73.1 %

45°C – Lower tortuosity (τ) 84.8 %

60°C 84.1 %

60°C – Lower τ 92.5 %

Next Generation Electrolyte 1 83.5 %

Next Generation Electrolyte 2 91.9 %

Technical Accomplishments and Progress



1-D HEAT ANALYSIS FOR 4 mAh/cm2 CELLS IN PACK
• 4 mAh/cm2 anode and scaled to 100 kWh battery for EV (neglecting scaling loses)
• Dominant losses are from electrolyte transport and then charge transfer reactions. 
• The 5% carbon black results in negligible losses from electron conduction/contact resistance in cathode 

(verified by 4-point probe measurements by Dean Wheeler) 

• Each kW of adiabatic heat during 10-
minute charge would result in slightly 
over 1.3°C temperature rise

• For Next Gen 2 electrolyte, 30 kW 
heat removal during charging would 
result in 10°C temperature rise 

• Requires heat removal much higher 
than typical heat exchangers in EVs

Technical Accomplishments and Progress



LATERAL TEMPERATURE DIFFERENCE ACROSS CELL

Temperature gain is proportional 
to length squared

• Preliminary analysis for temperature difference across cell
• Each line represents different amount of heat removal from tabs
• 91% efficiency for cell operating with 

Next Gen 1 electrolyte
• Significant amount of heat is laterally 

conducted through cathode, anode, 
and closed cycle (CC) foils

Technical Accomplishments and Progress



VERTICAL TEMPERATURE DIFFERENCE ACROSS STACK
• Preliminary analysis for temperature difference across stack/layers
• Analysis assumes 90% of heat leaves through face
• Efficiency = 91%
• Temperature Difference is proportional to (where q is heat from 1 layer)

• 𝑑𝑑𝑑𝑑𝛼𝛼 ∑1𝑁𝑁 𝑞𝑞 𝑛𝑛 = 𝑁𝑁(𝑁𝑁+1)
2

where N is number of layers

L = 10 cm
W = 14 cm

Technical Accomplishments and Progress



SUMMARY OF HEAT GENERATION FOR EV LOADING (4 mAh/cm2 ) WITH 10 MINUTE CHARGE

Technical Accomplishments and Progress

Parameter Summary/Value

Heat sources 50%-60% electrolyte
20%-30% reaction kinetics
5%-10% lateral CC conduction in large cell

Effective C-rate 3.5C-5.5C (depending on temperature/electrolyte/electrode 
improvements)

Isothermal heat exchange
requirements (100 kWh battery)

40kW-55kW

Adiabatic temperature rise 50°C – 70°C

Voltage drop across cell from CC (L is length between tabs) Proportional to L2 (need to limit to 10 cm-15 cm to limit 
voltage drop below 10 mV)

Temperature difference across single cell (center to tab) Proportional to L2 (becomes large if 10% or more heat 
removed from tabs)

Temperature drop across stack Proportional to N2 (number of layers) likely limited to 30 Ah 
or require cooling on both sides.

Increasing CC foil thickness by a factor of 2 Enables cells 20 cm – 30 cm in length.  Reduces cell density 
from 230 Wh/kg to 210 Wh/kg



BUILDING WORKING RTD IN ELECTROLYTE
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Improving device structure for stability in cell.

Substrate

Gen 1Cover

RTD

Gen 2

Improved adhesion

Gen 3

Improved protection

Stable and reliable temperature responses are demonstrated with Gen 3 RTD

Technical Accomplishments and Progress



RTD - OPERANDO TEMPERATURE MONITORING
Resistance change observed at different C-rates
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difference

RTD outside

NMC 532/Graphite
200 mAh

Jelly Roll

RTD inside

Pouch Case

Technical Accomplishments and Progress

Temperature change should be more significant with larger capacity cells



OPERANDO TEMPERATURE MEASUREMENTS IN POUCH CELLS
XRD/synchrotron experimental setup for single layer pouch cell.

Clear pouch cell
(standard pouch 
material aluminized, 
obscuring aluminum 
CC peak)

Mg alloy sheet to 
assess pouch 
temperature.

Thermocouple
(plastic block surf.)

Thermocouple 
inserted between 
plastic blocks (not 
shown)

Heat tape for 
calibration 
experiments

Technical Accomplishments and Progress



OPERANDO TEMPERATURE MEASUREMENTS IN POUCH CELLS

 Control Experiments
– Temperature varied with heat tape (Room Temperature, 25°C, 30°C, 35°C, 40°C) at 

constant SOC
– Slow C/2 CC cycling (3.0-4.1 V) while pouch held at 30°C

 Fast Cycling Experiments
– 4C CCCV from 3.0-4.1 V
– 8C CCCV from 3.0-4.1 V

 Thermal analysis pending from recent beamtime.

Beamtime experiments completed on February 26th and 27th at Advanced Light 
Source.

Representative XRD spectrum

Technical Accomplishments and Progress
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OPERANDO BATTERY THERMAL TRANSPORT MEASUREMENTS
Developing in-situ 3ω sensor to quantify thermal impedance changes in cell to quantify 
internal temperatures.

Used to 
calculate 
temperatures 
within a cell.

Technical Accomplishments and Progress

Above: Operando
measurements 
revealed ~50% 
increase of total 
thermal resistance 
after over 100 
cycles

Left: Sweep 
heating 
frequency to 
measure 
thermal 
transport 
properties at 
different 
distances from 
sensor



MEASURE EFFECT ON FULL CELL
Quantifying thermal transport changes as the cell ages.

Thermal insulation layer

Pouch cell

Cu Heat Sink
Heat flux sensor

Surface TC 1

Surface TC 2
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T-drop across cell at a 2C charge 
and 1C discharge rate.

Future experiments: vary C-
rates, T∞, and pressure to 
understand how these parameters 
affect impedance changes within 
cell.

Below: Top view of experiment to 
understand cell impedance changes
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DIRECT THERMAL RESISTANCE MEASUREMENT OF COMMERCIAL CELLS
Developing an external 3ω sensor to simplify use with commercial cells.

Pressure

Thermal 
insulation

Cu heat sink

Preliminary results: sensors outside
pouch to directly measure thermal 
conductivity

Thermal 
insulation
Separator

Thermal 
insulation

Pouch Cell
Cu heat 

sink
Cu heat 

sink

Separator

Left: 
External 
3-omega 
sensor 
“sticker”
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Technical Accomplishments and Progress



RESPONSES TO PREVIOUS YEAR’S COMMENTS
Not reviewed during the previous AMR.
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REMAINING CHALLENGES AND BARRIERS
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Heat Generation
 Determine methods to reduce the heat produced from electrolyte transport and charge transfer 

reactions.
 Fast charging at elevated temperatures limits lithium plating and allows for the cell to be charged at  

higher efficiencies.  However, life/degradation, gassing, and delamination concerns will have to be 
addressed.

RTD
 Decrease RTD size and improve reliability in electrolyte solvents.
 Determine reliable method to pass electrical feedthroughs into cells.

XRD/Beamtime
 Incorporate different current collectors into multi-layer cell to understand temperature difference 

between interior/exterior of cell.

Thermal Transport Experiments
 Reduce size of internal/external 3ω sensors.
 Link model with data from 3ω sensors in multi-layer pouch cells to calculate internal temperatures. 



PROPOSED FUTURE WORK
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Heat Generation
 Use heat generation data and incorporate into 3-D thermal model.
 Understand how tab configuration, length/width of cell, thickness of electrodes affects temperature 

uniformity within cell.

RTD
 Continue to optimize RTD size and chemical resistance to electrolyte solvents.
 Incorporate optimized RTD in multi-layer lithium-ion pouch cell.

XRD/Beamtime
 Analyze results to determine temperature changes between aluminum, copper, and pouch material 

via the magnesium sheet adhered to outside of cell.

Thermal Transport Experiments
 Optimize internal/external 3ω sensors.
 Carrying-out direct temperature rise observation experiments.
 Exploring sensor material options to boost sensitivity.  



SUMMARY
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Heat Generation Critical Factors for an EV Pouch Cell
 100 kWh battery would produce 50 kW of heat during a 10-minute charge, with significant amount of 

heat being from li-ion transport/conduction within the electrolyte phase.
 1 kW of heat generation during a 10-minute charge results in a 1.3°C adiabatic temperature rise. 
 If allowable temperature rise is kept to 20°C, then 35 kW of heat must be removed which is 

substantially more than present-day heat exchangers in electric vehicles.
 If cooling is only available from one face side of cell, then capacity is likely limited to ~30 Ah.
 Cooling both sides of pouch would enable cells up to 50 Ah - 60 Ah.
 Large amounts of heat can be removed via tab cooling. However, the temperature difference between 

the center and edge of layers becomes large when > 20% of heat is removed through tabs. 
 Significant benefit to improving thermal conductivity of anode, cathode, separator, and electrolyte    

not much benefit from enhancing electrical conductivity of current collectors. 

Measuring Internal Temperatures
 Successful fabrication and test of an internal RTD within a cell.
 Demonstrated XRD imaging of a single layer pouch cell at the Advanced Light Source.
 Coupled modeling results with data from 3ω sensors to understand the thermal transport properties 

within a cell.
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